翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

interferometric visibility : ウィキペディア英語版
interferometric visibility

The interferometric visibility (also known as "interference visibility" or "fringe visibility" or just "visibility") quantifies the contrast of interference in any system which has wave-like properties, such as optics, quantum mechanics, water waves, or electrical signals. Generally, two or more waves are combined and as the phase difference between them varies, the power or intensity (probability or population in quantum mechanics) of the resulting wave oscillates, forming an interference pattern. The pattern may be visible all at once because the phase difference varies as a function of space, as in a 2-slit experiment. Alternately, the phase difference may be manually controlled by the operator, for example by adjusting a vernier knob in an interferometer. The ratio of the size or amplitude of these oscillations to the sum of the powers of the individual waves is defined as the visibility.
The interferometric visibility gives a practical way to measure the coherence of two waves (or one wave with itself). A theoretical definition of the coherence is given by the degree of coherence, using the notion of correlation.
==Visibility in optics==
In linear optical interferometers like the Mach-Zehnder interferometer, Michelson interferometer, and Sagnac interferometer interference manifests itself as oscillations in the outgoing intensity, also called "fringes". Under these circumstances, the interferometric visibility is also known as the "Michelson visibility" 〔http://scienceworld.wolfram.com/physics/FringeVisibility.html〕 or the "fringe visibility." For this type of interference, the sum of the intensities (powers) of the two interfering waves equals the average of the fringes. It follows that the visibility can be written as
:\text(\text)=\frac}.
where the "amplitude of the oscillation" is defined as half of the maximum minus the minimum and the "average of the oscillation" means the average of the maximum minus the minimum. This can be rewritten as
:\text(\text)=\frac,
where max is the maximum of the oscillations and min the minimum of the oscillations. If the two optical fields are ideally monochromatic (consist of only single wavelength) point sources then the predicted visibility will be
:\text(\text) = \frac,
where I_1 and I_2 indicates the intensity of the respective wave. Any dissimilarity between the optical fields will decrease the visibility from the ideal. In this sense, the visibility is a measure of the coherence between two optical fields. A theoretical definition for this is given by the degree of coherence. This definition of interference directly applies to the interference of water waves and electric signals.



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「interferometric visibility」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.